
U. S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL WEATHER SERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 349

APPLICATION OF IMPLICIT NORMAL MODE INITIALIZATION
TO THE NMC NESTED GRID MODEL

DAVID F. PARRISH
DEVELOPMENT DIVISION

JANUARY 1989

THIS IS AN UNREVIEWED MANUSCRIPT, PRIMARILY INTENDED FOR
INFORMAL EXCHANGE OF INFORMATION AMONG NMC STAFF MEMBERS.



1. INTRODUCTION

Several techniques now exist for the initialization of

limited area models that are good approximations to nonlinear

normal mode initialization (NLNMI), but which do not require

computation of normal modes (Bourke and McGregor, 1983, Juvanon

du Vachet, 1986, for example). Ballish (1979) provided an early

intercomparison of some non-normal mode methods with normal mode

procedures using a global model. However, a complete investiga-

tion of non-normal mode schemes has recently been provided by

Temperton (1988,1989; henceforth, T88 and T89) for limited area

and spectral model applications. The derivation in T88 unifies

the various methods and also brings forth an "improved" scheme,

which is virtually identical to current global NLNMI procedures.

Normal modes are actually used in the derivations of T88, but

because the actual initialization does not require explicit

normal mode computations, it is appropriately referred to as

"implicit normal mode initialization" (INMI).

The essential feature of INMI is that transformations

between physical and normal mode space are replaced by elliptic

boundary value problems which are solved in physical space. That

this should be possible is not surprising. Leith (1980) demon-

strated clearly the relationship between quasigeostrophic balance

equations and normal mode initialization for an f-plane model.

What Temperton has done is to create a variant of these equations

which is energetically consistent on a sphere, while at the same
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time keeping the full variablity of the Coriolis parameter. The

price to pay for this result is elimination of the beta term in

the vorticity equation, which gives rise to Rossby wave motion.

While this might seem a heavy cost, in fact, for the purpose of

describing balance, the effect is negligible.

To apply INMI to the National Meteorological Center Nested

Grid Model (NGM, Phillips, 1979), it is necessary to solve

boundary value problems on the nested grids. Multigrid methods

(Fulton et al, 1986) appear to be ideally suited because of the

NGM grid nesting, but the procedures are complex and require' a

lot of development. An alternative approach is to embed the

boundary value problem on the entire sphere and then solve it

using spherical harmonics (an idea suggested by Machenhauer

except that normal modes are used instead of the implicit

method). This idea is easy to implement and allows for the

possibility of a universal "black box" INMI, applicable to any

model with little special programming.

However, this approach has two disadvantages. First,

because the spectral and finite difference solutions of the

boundary value problems diverge from each other significantly as

the grid scale is approached, the balance achieved is not very

good for small scales. Second, for high resolution models,

extension to the globe is costly. In practice, the first disad-

vantage doesn't seem to be a problem, at least for the NGM. The

second problem may be resolved by using the Schmidt (1977)

sphere-to-sphere conformal map, which defines a new latitude-

longitude coordinate system with locally high resolution.

4



The present operational initialization (Hoke et al, to

appear) of the NGM is similar to the above mentioned process,

but with an important difference. Initialization is done using a

hemispheric spectral model with the same vertical structure as

the NGM (similar to the Canadian approach, Verner and Benoit,

1984). This result is interpolated horizontally to the NGM

grids. Because of this, the resolution of the model variables,

and in particular, the terrain, is limited to that of the hemi-

spheric spectral model (currently R80). The method described

here uses the spectral approach only to solve the INMI boundary

value problems. This generates balancing corrections which are

applied directly to the model grid. Only the balance correction

is constrained by resolution of the spectral representation, not

the full fields. Both procedures appear to give almost identical

results for the current NGM model, with perhaps a slight advan-

tage in forecast skill going to the new INMI.

In the remainder of this paper, we have first a brief deri-

vation of INMI (scheme B from T89). Then follows in section 3

the details of implementation for the NGM. Results, complete

with obligatory barographs, are next. The concept of incremental

initialization, which is used in the operational implementation

of the INMI, is introduced in section 5. Some results of a

parallel test are also presented. Discussion and conclusion

complete this note.

2. IMPLICIT INITIALIZATION

The following is a brief presentation of INMI as carefully

described in T88. The interested reader is urged to examine both
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T88 and T89 for excellent treatments of the details.

The starting point for all normal mode initialization

methods is an appropriate linearization of the prediction equa-

tions. Because extension in the vertical coordinate is treated

identically for all schemes (a vertical mode decomposition is

defined), we need consider only the shallow water equations,

which are written here in vorticity-divergence form:

-2 -2

z BV z - FV d + r (2.1a)
z

-2 -2 2

d = FV z + BV d - g h + r (2.lb)
d

h = -hd + r (2.1c)
h

z is the relative vorticity

d is the divergence

h is the free surface elevation

h is the scale depth for a given vertical mode

r , r , r are non-linear residuals
z d h

z is local time derivative

B = k*Vx(f V)

F = v *(f VV)

f is the Coriolis parameter

k is the vertical unit vector

V symbolizes the inversion of 7 under

appropriate boundary conditions.
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Equations (2.1) represent the standard linearization upon which

global normal mode procedures are based. The implicit schemes

start with various modified linear models. We will only consider

scheme B from T89, which was judged to be the "best" in the sense

that it is closest to the standard linear model and is ener-

getically consistent. To get this model, we take the first term

on the rhs of (2.la) and add it to the nonlinear residual,

getting,

-2
2 = -FV d + r ' (2.la')

z

Thus the linear model we will be using as the basis for initiali-

zation is:

-2
z = -FV d (2.2a)

-2 -2 2
d = Fv7 z + Bv d - gV h (2.2b)

h= -hd (2.2c)

INMI depends upon distinguishing the fast and slow parts of

a state without resorting directly to using normal modes. To see

how this can be done with the modified linear model (2.2), we

first suppose that any variable has a slow and a fast part, viz.

z = z +z
s f

where s and f refer to slow and fast. The slow modes are non-

divergent for the modified linear model. Using this knowledge and

the orthogonality of all slow modes to all fast modes, equations

(2.2) reduce to the following relationships for the slow and fast

components of a given state:
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z =0 (2.3a)

-2

z = -FV d (2.3b)

f f

-2 2

0 = FV z - gV h (2.3c)
s s

-2 -2 2

d = Fv z + B 7 d - gv h (2.3d)
f f f f

h = 0 (2.3e)

s

h = -hd (2.3f)
f f

From (2.3a,e) we see that the slow modes for this linear model

are stationary as well as non-divergent. Equation (2.3c) is a

form of the linear balance equation which provides a relationship

between z and h . A similiar relationship can be obtained for
s s

z and h by eliminating d between (2.3f) and (2.3b), integra-
f f f

ting in time, and noting that the integration constant must be

zero (see T88 for proof). There results

-1 -2
z = hFV h (2.4)
f f

Relationships (2.3) and (2.4) allow decomposition of a state

(z,d,h) into its slow and fast parts. The following procedure

illustrates one way to do this:

-2 2

(1) define and calculate w = FV z - gV h
f

(w contains only fast modes because of (2.3c))
f
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(2) (a) observe that because of (2.3c)

-2 2
FV z - gVh = w

+ f f

(b) substitute for z using (2.4) to get
f

-1 -2 2 2 2 -1
t(gh) (F V ) 9 a g w

f £

(c) solve for h
f

-1 -2
(3) compute z from (2.4), z = h FV h

f f f

(4) z = z - z ; d = 0; d = d; h = h - h
s f s f s f

By purely algebraic manipulation in physical space it is possible

to find slow and fast parts of a state. When solving for h , and
s

when wind components are obtained from vorticity and divergence,

care must be given to the boundary conditions used. See T88 for

a very good treatment of the boundary condition problem.

Before moving on to initialization, let us first briefly

review how NLNMI is usually implemented. Let

x = icx + r(x)

represent the equation for a single gravity mode of frequency c.

The Machenhauer condition (Machenhauer, 1977) is to find x, the

amplitude of the gravity mode, such that the gravity mode time

tendency x is zero,

x = 0.

We must then solve the nonlinear equation

icx + r(x) = 0

for x. Traditionally this is solved by a simple iteration. Let

x(n+l) = x(n) + dx(n)
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be the result of the n-th iteration. Then we have

x(n) = icx(n) + r(n) (2.5)

0 = ic(x(n) + dx(n)) + r(n) (2.6)

Solving (2.6) for dx(n) and using (2.5), we see that

icdx(n) = -x(n) (2.7)

or
-1

dx(n) = ic x(n) (2.8)

This form is used because it is easier to compute x than r

(simply advance the model one timestep, difference and divide by

dt).

This is now applied to equations (2.1). Note that "icx" is

to be replaced by the rhs of (2.2). The first step is to filter

slow modes out of the tendencies. In a manner similiar to

before, form

-2 . 2
w = FV z g h (2.9)
f

where again because of (2.3c) w contains only fast components.
f

Equation (2.9) is equivalent to

FV z - g h = w (2.10)
f f f

Repeating the form of (2.7), replace z and h with the appro-
f f

priate rhs from (2.2), and put increments dz, dd, dh in place of

z, d, h. There results

-1 -22 2 -1
[(gh) (FV ) I V]dd = -(g-h) w (2.11)

f f

Equation (2.11) can be solved for the incremental change to the

divergence, dd
f
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To get the remaining corrections, dz , dh , we use (2.3d)
f f

with the rhs variables again replaced by their increments. We

have

-2 -2 2
d = FV dz + V dd - g dh (2.12)
f f f f

-1 -2
Using (2.4) ( dz = h FV dh ) again and moving the term

f f
with dd to the other side (since we know dd now), we discover

f f
that dh is the solution of

f

-1 -22 2 -1 -2
[(gh) (F ) -V dh = g (d -BV dd ) (2.13)

f f f

Now that we have dh , we use (2.4) to get dz . All fast mode
f f

corrections, dz , dd , and dh are now available to be added
f f f

directly to z, d, and h.

To summarize, one iteration of INMI, as indicated schemati-

cally by (2.8), consists of the following steps:

(1) Execute one model timestep to get z, d, h.

(2) Compute w using (2.9).
f

(3) Solve (2.11) for dd
f

(4) Solve (2.13) for dh
f

(5) Use (2.4) to get dz
f

(6) Update z, d, h z = z + dz , etc.
f

As demonstrated in T89, this procedure, when done on a sphere, is

identical to initialization using normal modes if the modes are

obtained from the modified linear model (2.2).
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3. APPLICATION TO NGM

Implicit initialization requires the solution of elliptic

boundary value problems, where the elliptic operator is

_ -1 -2 2 2
(gh) (FV -2 V

The correct boundary conditions are derived in T88. The solution

of this elliptic problem with the appropriate bc's for the NGM is

greatly complicated due to the grid nesting and the hemispheric

wall condition which runs through the interior of the A-grid in a

complex way. Multigrid methods can probably be used for this

case, but here an approximate solution is used.

All that is required of the NGM model is variable tendencies

which can easily be obtained by running the model for one time-

step. To get the incremental initialization correction, we

interpolate these tendencies to a Gaussian latitude-longitude

grid, transform to hemispheric spherical harmonics, and then

solve the elliptic problem in spectral space, where it reduces to

a tridiagonal matrix. The spectral formulation is exactly as

presented in T89. The resulting corrections are reconstructed on

the Gaussian grid, and then interpolated to the NGM grids. This

process creates a balance correction that is relatively smooth

compared to the grid resolution (especially on the high-resolu-

tion C-grid). In addition, the linear model is now spectral and

not directly consistent with the finite differences of the NGM.

However, judging from the results, these do not appear to be

limitations.

While this approach may seem cumbersome, it is actually much

more straightforward than a multigrid solution. The same proce-
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dure could be applied to other regional models, and in fact this

was originally proposed by Machenhauer as a method for limited

area initialization. The problem before, when normal modes were

used, was that the initialization increments are obtained over a

global domain which should have a resolution comparable to the

regional model. A great deal of storage is required for the

normal modes. Since the present approach does not use normal

modes directly, that is no longer a problem.

Another problem, though, is that for very high resolution

models, computation of increments on a global domain is 'too

expensive (which is why the model is regional in the first

place). As mentioned in the introduction, this may be addressed

by solving the elliptic problem on a Schmidt coordinate. Here,

we still have a latitude-longitude spherical system, and can use

spherical harmonics, but now on a mapped sphere, which is rotated

and stretched relative to the earth coordinates, so that a local

area is emphasized. The matrix problem to solve is now block-

tridiagonal and could be solved directly for moderate resolution.

Solution by conjugate gradients may be preferable.

A subroutine is being developed which uses this coordinate

system and will provide an initialization correction for any

model given that model's tendencies and a few other descriptive

items. This will initialize most models without having to design

a program specifically for each one.

4. RESULTS

Here we show some results from a series of experiments.

First, we have a forecast from an uninitialized analysis, then
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one from the operational initialization, and finally the test

initialization. The operational initialization is first-order

Baer-Tribbia for two vertical modes with a hemispheric R80 spec-

tral model using the NGM vertical structure. The initialized

fields are reconstructed on a 320 x 90 Gaussian grid and interpo-

lated horizontally to the NGM grids. The test initialization

also is done for two vertical modes, but uses two iterations of

solving for the Machenhauer condition that gravity tendencies be

zero. The spectral truncation for solving the elliptic problems

is T59. (More resolution than this appears to be unnecessary And

may actually degrade the result, because of the incompatibility

between the spectral and finite difference approximations.)

Figure 1 shows the surface pressure at Washington, D.C. for

the three cases. The operational and test forecasts are vir-

tually identical, and both have successfully filtered most of the

large amplitude oscillations evident in the uninitialized run.

The variablilty which remains is partly a result of initializing

only two vertical modes, and partly the incompatibility between

spectral and finite difference representations. Some rapid

variation is also to be expected which is meteorologically cor-

rect. The high resolution part of the NGM is capable of genera-

ting rapid pressure variation in response to frontal passage and

squall-line generation.

The quantity BAL, as defined in T88, is shown in figures 2

and 3 for the two vertical modes which are initialized. BAL is

a measure of the energy partition between slow and fast parts of

the tendencies of the model variables. Here, BAL is averaged over

two-dimensional or total wave-number ranges (which are homoge-
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neous, isotropic measures of scale on a sphere). First, observe

that just one slow mode curve appears on each graph, since the

slow mode tendencies are constant for all three experiments.

This is to be expected, because only the fast modes are altered

by both the operational and test initializations. Second, notice

that the tendency of fast modes for each iteration of the test

initialization is reduced much more for large scales. Con-

vergence is slow for the smallest scales being initialized. This

is probably caused by the incompatability between the spectral

representation used to generate initialization corrections "and

the NGM finite differences used to compute the tendencies.

A comparison of the operational fast mode tendency amplitude

against two iterations of the test scheme show that they are

similar, with the test result "better" for larger scales and the

operational slightly "better" for smaller scales. "Better" is

used in quotes here because, as pointed out by Phillips (1981),

the fast mode tendencies should not be zero as the Machenhauer

condition requires, but instead should have amplitude comparable

to the slow mode tendencies. By this measure, the operational

and test schemes are in approximate agreement, since the fast

mode tendencies are comparable or less than the slow mode values

for all scales represented here.

Because the INMI computes initialization corrections with a

T59 spectral representation, the difference between analyzed and

initialized fields is smoother relative to the operational

result, which is R80. This can be seen in figures 4 and 5, which

depict changes in the 500mb heights due to initialization for the

test and operational schemes respectively. Apart from the
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smoother result for the INMI, the two systems produce approxi-

mately the same adjustments. 48 hour forecasts from each of

these initial conditions produce virtually identical results, as

can be seen in figures 6 and 7, which show differences of each

with the verifying operational analysis. For reference, the

operational analysis valid at each time is presented in figures 8

and 9.

5. INCREMENTAL INITIALIZATION

By incremental initialization, we mean that initializafion

is applied only to an analysis increment, leaving the first guess

to the analysis unchanged. A persistent problem with NLNMI is

that many physical processes in the model (particularly convec-

tion) are incorrectly initialized--the initialized divergence

amplitude is significantly underestimated. By modifying just the

analysis increment, the divergent response to model physics

remains intact. Thus, the initialization can be adiabatic, with

diabatic processes passed on implicitly in the forecast first

guess. If data assimilation is done with an interval of 6 hours

or less, this may be a good approximation.

To understand incremental initialization, we go back to the

simple representation for a single normal mode of frequency c:

x = icx + r(x) (5.1)

Let x represent the first guess field, and x the analysis. Each
b a

field separately satisfies an equation of the form (5.1):

x = icx + r (5.2)
b b b

x = icx + r (5.3)
a a a
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Now, under the basic assumption

that x is in desirable balance and is not to be altered, sub-
b

tract (5.2) from (5.3) to get a non-linear increment equation

y = icy + s (5.4)

where y = x - x and s = r - r
a b a b

Equation (5.4) has the same form as (5.1) and we can write

immediately the same result as in section 2. One iteration of

non-linear incremental initialization is described by

-1
dy(n) = ic y(n)

Notice that dy can be added directly to x--the difference field y

is not required in the computation. We have

x(n+1) = x(n) + dy(n) .

Incremental initialization can be implemented with only a minor

change to the standard NLNMI scheme. We first compute once and

save the tendencies of the first guess, xb. Then for each itera-

tion of NLNMI, we first compute x in the usual way, but then

subtract x to get the desired increment equation tendency. The
b

rest is as before.

6. RESULTS FROM A PARALLEL TEST

The initialization of increments, described in the last

section, is difficult to test in isolation. However, it is an

integral part of the proposed replacement for the operational NGM

initialization, which was compared to the operational system in a

parallel test. The test system contains several steps. First,

the first guess from the spectral model is interpolated verti-

cally and horizontally to the NGM grids. A full field INMI is

17



applied at this point to remove imbalances introduced because of

the vertical interpolation. (This was suggested by work of

Lorenc, 1988. He found that initialization changes were larger

than analysis corrections and seemed to result from the vertical

interpolation and corresponding change of model terrain.) Next,

analysis increments are obtained and added on to these

initialized first guess fields on the NGM model grids. Finally,

an incremental INMI is applied to this result, using as a refe-

rence, the initialized first guess.

The parallel test experiment was conducted over the period of

28 June 0000GMT to 8 July 1200GMT, 1988. The results show that

the two systems are very close, with perhaps a slight advantage

going to the test system. Figure 10 shows the surface pressure

for the two systems at Oklahoma City. There is a pulse with

amplitude of about 2mb at 18 hours in the operational system

which is absent in the test run. This probably comes from the

Himalayan plateau. Otherwise, the two traces agree very well.

The rms sigma-dot values shown in the figure are consistently

slightly smaller for the test run, also indicating a slight

improvement in balance.

7. CONCLUSION

The results presented in this paper demonstrate that impli-

cit normal mode initialization can be successfully applied to a

model with nested grids and complex boundary conditions. The

application is approximate, however, since a spectral technique

is used to solve the elliptic boundary value problems which are a

part of INMI. For this reason, small scales are not well bal-
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anced by this procedure. This is not considered to be a problem,

at least for the NGM model, for two reasons. First, the Lax-

Wendroff time differencing scheme very quickly eliminates oscil-

lations which result from 4-grid increment and smaller gravity

waves. Second, the model parameterizations continually introduce

small scale noise, which is controlled by the time-differencing

and some spatial smoothing.

Direct solution of the "correct" (ie finite difference)

elliptic problems using consistent model discretization seems

desirable and gives the best balance, as T88 results demonstrate.

However, it may be quite difficult to set up and solve the appro-

priate elliptic problem for some models, as is the case for the

NGM which has nested grids and complicated boundary conditions.

The alternative approach used here of imbedding the problem on a

sphere and solving with spherical harmonics, appears to produce

an adaquate result and should be applicable in "black box" form

to any model with little special formulation required. The

principle limitation of this method is the requirement of high

resolution over the entire globe for application to high resolu-

tion limited area models, which is computationally wasteful. As

pointed out earlier, the Schmidt variable resolution sphere-to-

sphere mapping might provide a reasonable solution. Work is

currently in progress on a "black box" initialization algorithm

which incorporates the variable resolution map.

The idea of incremental normal mode initialization was also

presented. Initialization, when applied to full fields, can be

very disruptive of divergent motions that exist in response to

convective activity. At NMC, we currently initialize only 2
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vertical modes as a partial solution to this problem (Carr et al,

1988). By applying the initialization adjustment only to the

analysis increment, a further improvement in the short-range

forecast behavior can be realized. While our use of the incre-

mental procedure is primarily intended for the NGM in an experi-

mental high-resolution data-assimilation system, it is also used

in the operational NGM initialization to reduce the effect of

interpolation error in the NGM analysis.

Incremental INMI, as described here, was implemented into

the operational regional analysis and forecast system (RAFS) at

NMC in December of 1988.
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Figure captions

1. Surface pressure at Washington, DC. Solid line with

pluses is no initialization. Dotted line with triangles

is operational initialization. Dashed line with circles

is test initialization.

2. The quantity BAL (mean square of tendency amplitude in

energy units). Ordinate is loglO(BAL). Abscissa is two-

dimensional or total wave number groups. The solid line

with pluses represents the slow mode mean square tendency.

The corresponding fast mode quantities are shown for

iterations 0, 1 and 2 (short dash, long dash, and dots).

Fast mode tendency after operational initialization is

represented with the dot-dash. All for vertical mode 1.

3. Same as Fig. 2 but for vertical mode 2.

4. Change to 500mb heights caused by INMI.

5. Same as Fig. 4 for operational initialization.

6. 48hr forecast of 500mb height (INMI - no init).

7. Same as Fig. 6 for operational initialization.

8. Initial 500mb height after operational initialization.

9. Operational 48hr forecast of 500mb height.

10. RMS sigma-dot and surface pressure variations at 5 minute

intervals for operational and parallel systems. (Parallel

system contains INMI to be implemented.)
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BALANCE STATISTICS FOR INITIALIZATION
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